Co-milling of oxcarbazepine with Soluplus for the enhancement of solubility and dissolution rate

Authors

Abstract

Background and objective
Poor solubility and dissolution rates affect the bioavailability of drugs. The aim of this study was to improve the solubility and dissolution rate of a poorly soluble drug, oxcarbazepine by its mechanochemical activation via the co-milling technique.
Materials and methods
The drug and Soluplus (in two different ratios) were co-milled in a planetary ball bill. The bulk properties, solubility, and dissolution rate were determined and differential scanning calorimetry, powder X-ray diffraction, Fourier-transform infrared spectroscopy (FTIR), and laser diffraction (for particle size determination) techniques were used to characterize drug and co-milled formulations.
Results and discussion
The results have shown good compressibility and excellent flow of co-milled mixtures as compared with the drug. The solubility of the drug (0.448±2 mg/ml) was increased by 2–3-fold in co-milled mixtures while the dissolution rate of oxcarbazepine was increased up to 2.5–3 times. Both differential scanning calorimetry and powder X-ray diffraction results have shown a reduction of crystallinity while the Fourier-transform infrared spectroscopy spectra indicated no interaction. Laser diffraction studies have shown ∼5 times reduction in mean particle size.
Conclusion
The study concludes that co-milling is effective in enhancing solubility and dissolution of poor soluble drugs.

Keywords